Please use this identifier to cite or link to this item:
https://idr.l1.nitk.ac.in/jspui/handle/123456789/12416
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Gurubasavaraju, T.M. | |
dc.contributor.author | Kumar, H. | |
dc.contributor.author | Arun, M. | |
dc.date.accessioned | 2020-03-31T08:39:12Z | - |
dc.date.available | 2020-03-31T08:39:12Z | - |
dc.date.issued | 2017 | |
dc.identifier.citation | Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2017, Vol.39, 6, pp.2225-2240 | en_US |
dc.identifier.uri | http://idr.nitk.ac.in/jspui/handle/123456789/12416 | - |
dc.description.abstract | Magnetorheological dampers (MR) are one of the semi active devices, which has the capability of providing variable damping force for the variable input current. Induced force is directly dependent on the amount of magnetic flux density developed in effective fluid flow gap of the MR damper. In the present work, influence of material properties on the magnetic flux is investigated by considering magnetic and nonmagnetic material for the outer cylinder of shear mode type MR damper. Magnetostatic analysis is carried out to obtain magnetic flux density for the initial configuration of the MR damper. From the analysis, it is found that usage of magnetic material cylinder which is insulated with nonmagnetic material provided higher value of magnetic flux and damping force. The geometric optimisation of MR damper is carried out to obtain the maximum flux density in the fluid flow gap. The objective function of the optimisation includes the maximum magnetic flux density and minimising fluid flow gap. Design variables considered are fluid flow gap, number of turns in the electromagnetic coil, length of the flange and DC current input. The optimisation is performed through response surface method using finite element analysis software (ANSYS). The best optimal design parameters are obtained by choosing the appropriate value of objective function. The best configuration of the design parameters, which induce the maximum magnetic flux density, is identified. The force induced in the MR damper is estimated analytically and a comparative study of the optimised and non-optimised results was carried out. 2017, The Brazilian Society of Mechanical Sciences and Engineering. | en_US |
dc.title | Optimisation of monotube magnetorheological damper under shear mode | en_US |
dc.type | Article | en_US |
Appears in Collections: | 1. Journal Articles |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.